DOMpro: Protein Domain Prediction Using Profiles,
Secondary Structure, Relative Solvent Accessibility,
and Recursive Neural Networks

Jianlin Cheng jianlinc@ics.uci.edu
Michael J. Sweredoski msweredo@ics.uci.edu
Pierre Baldi pfbaldi@ics.uci.edu

Institute for Genomics and Bioinformatics, School of Information and Computer Sciences,
University of California Irvine, Irvine, CA 92697, USA

Abstract. Protein domains are the structural and functional units of proteins. The abil-
ity to parse protein chains into different domains is important for protein classification and
for understanding protein structure, function, and evolution. Here we use machine learning
algorithms, in the form of recursive neural networks, to develop a protein domain predictor
called DOMpro. DOMpro predicts protein domains using a combination of evolutionary infor-
mation in the form of profiles, predicted secondary structure, and predicted relative solvent
accessibility. DOMpro is trained and tested on a curated dataset derived from the CATH
database. DOMpro correctly predicts the number of domains for 69% of the combined dataset
of single and multi-domain chains. DOMpro achieves a sensitivity of 76% and specificity of
85% with respect to the single-domain proteins and sensitivity of 59% and specificity of 38%
with respect to the two-domain proteins. DOMpro also achieved a sensitivity and specificity of
71% and 71% respectively in the Critical Assessment of Fully Automated Structure Prediction
4 (CAFASP-4) (Fischer et al., 1999; Saini and Fischer, 2005) and was ranked among the
top ab initio domain predictors. The DOMpro server, software, and dataset are available at
http://www.igh.uci.edu/servers /psss.html.
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1. Introduction

Domains are considered the structural and functional units of proteins. They can
be defined using multiple criteria, or combinations of criteria, including evolu-
tionary conservation, discrete functionality, and the ability to fold independently
(Holm and Sander, 1994). A domain can span an entire polypeptide chain or be
a subunit of a polypeptide chain that can fold into a stable tertiary structure
independently of any other domain (Levitt and Chothia, 1976). While typical
domains consist of a single continuous polypeptide segment, some domains may
be comprised of several discontinuous segments.

The identification of domains is an important step for protein classification
and for the study and prediction of protein structure, function, and evolution.
The topology of secondary structure elements in a domain is used by human
experts or automated systems in structural classification databases such as
FSSP-Dali Domain Dictionary (Holm and Sander, 1998a; Holm and Sander,
1998b), SCOP (Murzin et al., 1995), and CATH (Orengo et al., 2002). The
prediction of protein tertiary structure, especially ab initio prediction, can be
improved by segmenting the protein using the putative domain boundaries and
predicting each domain independently (Chivian et al., 2003). However, the iden-
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tification of protein domains based on sequence alone remains a challenging
problem.

A number of methods have been developed to identify protein domains start-
ing from their primary sequence. These methods can be roughly classified into
three categories: template based methods (Chivian et al., 2003; Heger and Holm,
2003; Marsden et al., 2002; von Ohsen et al., 2004; Zdobnov and Apweiler,
2001; Gewehr et al., 2005), non-template based (ab initio) methods (Bryson
et al., 2005; George and Heringa, 2002; Lexa and Valle, 2003; Linding et al.,
2003; Liu and Rost, 2004; Nagarajan and Yona, 2004; Wheelan et al., 2000),
and meta domain prediction methods (Saini and Fischer, 2005). Some template-
based methods use a sequence alignment approach where domains are identified
by aligning the target sequence against sequences in a domain classification
database (Marchler-Bauer et al., 2003). Other methods use alignments of sec-
ondary structures (Marsden et al., 2002). In these methods, domains are assigned
by aligning the predicted secondary structure of a target sequence against the
secondary structure of chains in CATH, which have known domain boundaries.

Some ab initio methods, such as tertiary structure folding approaches, average
several hundred predictions obtained from coarse ab initio simulations of protein
folding to assign domain boundaries to a given sequence (George and Heringa,
2002). One drawback of these approaches is that they are computationally in-
tensive. Other ab initio use a statistical approach, such as Domain Guess by Size
(Wheelan et al., 2000), to predict the likelihood of domain boundaries within a
given sequence based on the distributions of chain and domain lengths.

The ab initio prediction of domains using machine learning techniques is aided
by the availability of large, high quality, domain classification databases such
as CATH, SCOP and FSSP-Dali Domain Dictionary. Two recently published
algorithms attempt to predict domain boundaries using neural networks (Na-
garajan and Yona, 2004; Liu and Rost, 2004). The networks used by Nagarajan
and Yona (2004) incorporate the position specific physio-chemical properties of
amino acid and predicted secondary structure. Liu and Rost (2004) use neural
networks with amino acid composition, positional evolutionary conservation, as
well as predicted secondary structure and solvent accessibility.

Here we describe DOMpro, an ab initio machine learning approach for pre-
dicting domains, which uses profiles along with predicted secondary structure
and solvent accessibility in a 1D-recursive neural network (1D-RNN). These
networks are also used for the prediction of secondary structure and solvent
accessibility (Pollastri et al., 2001; Pollastri et al., 2002) in the SCRATCH suite
of servers (Baldi and Pollastri, 2003; Cheng et al., 2005a). Unlike previous neural
network-based approaches (Liu and Rost, 2004; Nagarajan and Yona, 2004), the
direct use of profiles in DOMpro is based on the assumption that sequence motifs
and their level of conservation in the boundary regions are different from those
found in the rest of the protein. The final assignment of protein domains is the
result of post-processing and statistical inference on the output of the 1D-RNN.



2. Methods

2.1. DATA

DOMpro is trained and tested on a curated dataset derived from the anno-
tated domains in the CATH domain database, version 2.5.1. Because the CATH
database contains only the sequences of domain regions, sequences from the
Protein Data Bank (PDB)(Berman et al., 2000) must be incorporated to recon-
struct entire chains. Once the chains are reconstructed, short sequences (< 40
residues) are filtered out.

UniqueProt (Mika and Rost, 2003) is then used to reduce sequence redun-
dancy in the dataset by ensuring that no pair of sequences have a HSSP value
greater than 5. The HSSP value between two sequences is a measure of their
similarity and takes into account both sequence identity and sequence length. A
HSSP value of 5 corresponds roughly to a sequence identity of 25% in a global
alignment of length 250.

Finally, the secondary structure and relative solvent accessibility are predicted
for each chain using SSpro and ACCpro (Baldi and Pollastri, 2003; Pollastri
et al., 2001; Pollastri et al., 2002). Using predicted secondary structure and sol-
vent accessibility values rather than the true values, which can be easily obtained
using the DSSP program (Kabsch and Sander, 1983), gives us a more realistic
and objective evaluation since the actual secondary structure and solvent acces-
sibility are not known during the prediction phase. To leverage evolutionary
information, PSI-BLAST (Altschul et al., 1997) is used to generate profiles
by aligning all chains against the Non-Redundant (NR) database, as in other
methods (Jones, 1999; Przybylski and Rost, 2002; Pollastri et al., 2001).
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Figure 1. Frequency of single and multi-domain chains in the redundancy-reduced dataset.
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Figure 2. Distributions of the lengths of single and multi-domain chains in the redun-
dancy-reduced dataset.

After redundancy reduction, our curated dataset contained 354 multi-domain
chains and 963 single-domain chains. The ratio of single to multi-domain chains
reflects the skewed distribution of single-domain chains in the PDB. Figure
1 shows the frequency of single and multi-domain chains in the redundancy-
reduced dataset. Figure 2 shows the distribution of chain lengths among single
and multi-domain chains.

Because the recursive neural networks are trained to recognize domain bound-
aries, only multi-domain proteins are used during the training process. During
the training and testing of the neural networks on multi-domain proteins, ten
fold cross-validation is used. Additional testing is performed on single-domain
proteins using models trained with multi-domain proteins.

2.2. THE INPUTS AND OUTPUTS OF THE ONE DIMENSIONAL RECURSIVE
NEURAL NETWORK

The problem of predicting domain boundaries can be viewed as a binary clas-
sification problem for each residue along a one-dimensional protein chain. Each
residue is labeled as being either a domain boundary residue or not.
Specifically, the target class for each residue is defined as follows. Following
the conventions used in prior domain boundary prediction papers (Liu and Rost,
2004; Marsden et al., 2002), residues within 20 amino acids of a domain boundary
are considered domain boundary residues and all other residues are considered
non-boundary residues. A variety of machine learning methods can be applied
to this classification problem, such as probabilistic graphical models, kernel
methods, and neural networks. DOMpro employs 1-D recursive neural networks
(ID-RNNs) (Baldi and Pollastri, 2003), which have been applied successfully
in the prediction of secondary structure, solvent accessibility, and disordered
regions (Cheng et al., 2005b; Pollastri et al., 2001; Pollastri et al., 2002). For
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each chain, the input is the array I, where the length of I is equal to the
number of residues in the chain. Each element I; is a vector with 25 components,
which encodes the profile as well as secondary structure and relative solvent
accessibility at position 7. Twenty components of the vector I; are real numbers
corresponding to the amino acid profile probabilities. The other five components
are binary: three correspond to the predicted secondary structure class of the
residue (Helix, Strand, or Coil) and two correspond to the predicted relative
solvent accessibility of the residue (i.e., under or over 25% exposed).

The training target for each chain is the 1-D binary array 7', where each T;
equals 1 or 0 depending on whether or not the residue at position ¢ is within a
boundary region. Neural networks (and most other machine learning methods)
can be trained on the dataset to learn a mapping from the input array I onto
an output array O, where O; is the predicted probability that the residue at
position ¢ is within a domain boundary region. The goal is to make the output
O as close as possible to the target 7'

2.3. PoST-PROCESSING OF THE 1D-RNN OuTPUT
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Figure 3. Example of smoothing applied to the raw output from the 1D-RNN

The raw output from the 1D-RNN is quite noisy (see Figure 3). DOMpro
uses smoothing to help correct for the random noise that is the result of false
positive hits. The smoothing is accomplished by averaging over a window of
length three around each position. Figure 3 shows how this smoothing tech-
nique helps to reduce the noise found in the raw output of the 1D-RNN. After
smoothing, a domain state (boundary/not boundary) is assigned to each residue
by thresholding the network’s output at 0.5.

While smoothing the neural network’s output helps correct for random spikes,
it does not necessarily create the long, continuous segments of boundary residues
that are required for domain assignment. Therefore, further inference on the
output is required.
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Figure 4. Histograms of length distributions for false positive and true positive boundary
regions

DOMpro infers the domain boundary regions from the residues predicted as
domain boundaries by pattern matching on the discretized output. Any section
of the output that matches the regular expression pattern ((B+N{0,m})+B+) is
considered a domain boundary region, where B is a predicted boundary residue,
N is a predicted non-boundary residue and m is the maximum separation
between two boundary residues that should be merged into one region.

Once DOMpro has inferred all possible domain boundary regions, it needs to
identify false positive domain boundary regions. DOMpro considers the bound-
ary region’s length a measure of its signal strength. Figure 4 shows that there is a
clear difference between the length distributions of true domain boundary regions
and false domain boundary regions. Based on these statistics, domain boundary
regions shorter than three residues are considered false positive hits and are
ignored. The target sequence is then cut into domain segments at the middle
residue of each boundary region. A target sequence with no predicted domain
boundaries is classified as a single-domain chain. The final step of DOMpro is to
assign domain numbers to each predicted domain segment. Our method simply
assigns each domain segment to a separate domain, ignoring at this time the
relatively rare problem of non-contiguous domains.

3. Results

The evaluation and comparison of domain predictors is complicated by the ex-
istence of several domain datasets/databases that sometimes conflict with each
other (Liu and Rost, 2004). Thus, the performance of a predictor on a dataset
other than its training dataset is limited by the percentage of agreement between
the training and testing datasets. With this caveat in mind, we observe that
DOMpro correctly predicts the number of domains for 69% of the combined
dataset of single and multi-domain proteins. DOMpro achieves a sensitivity
of 76% and specificity of 85% with respect to the single-domain proteins and
sensitivity of 59% and specificity of 38% with respect to the two-domain proteins.




Table I. CAFASP-4 Evaluation Results

Predictor 1-D Sen. 1-D Spec. 2-D Sen. 2-D Spec. All Sen. All Spec.
DOMpro 0.85 0.76 0.35 0.50 0.71 0.71
ADDA (Heger and Holm, 2003) 11 0.85 0.73 0.18 0.33 0.66 0.67
Armadillo § 0.10 1.00 0.24 0.18 0.14 0.31
Biozon (Nagarajan and Yona, 2004) 1 0.10 1.00 0.35 0.19 0.17 0.29
Dompred-Domssea (Marsden et al., 2002) } 0.80 0.75 0.29 0.63 0.66 0.73
Dompred-DPS (Bryson et al., 2005) { 0.68 0.78 0.47 0.50 0.62 0.69
Dopro (von Ohsen et al., 2004) I 0.85 0.88 0.53 0.64 0.76 0.81
Globplot (Linding et al., 2003) } 0.83 0.71 0.18 0.60 0.64 0.70
InterProScan (Zdobnov and Apweiler, 2001) 0.93 0.75 0.24 0.67 0.72 0.74
Mateo (Lexa and Valle, 2003) { 0.51 0.78 0.12 0.15 0.40 0.58
SSEP-Domain (Gewehr et al., 2005) 1 0.93 0.84 0.47 0.73 0.79 0.82
Robetta-Ginzu (Chivian et al., 2003) } 0.80 0.92 0.53 0.69 0.72 0.86
Robetta-Rosettadom § 0.83 0.94 0.71 0.75 0.79 0.88

T had lower sensitivity and specificity averaged over all targets compared to DOMpro

I template based methods

The precise prediction of domain boundaries for multi-domain proteins is
more difficult than the prediction of the number of domains (domain number).
DOMpro is able to correctly predict the domain number and boundary for 25% of
the two-domain proteins in our dataset derived from CATH. Additionally, DOM-
pro is able to correctly predict both the domain number and domain boundary
location for 20% of the multi-domain chains. For the evaluation of multi-domain
chains, we consider that a domain boundary has been correctly identified if the
predicted domain boundary is within 20 residues of the true domain boundary
as annotated in the CATH database. This definition is consistent with previous
work (Marsden et al., 2002).

DOMpro was independently evaluated along with 12 other predictors in
the Critical Assessment of Fully Automated Structure Prediction 4 (CAFASP-
4)(Fischer et al., 1999; Saini and Fischer, 2005). The results, kindly provided by

Dr. Saini, are available at http://cafasp/.bioinformatics.buffalo.edu/dp/update.html.

The evaluation set consisted of 41 single-domain CASP6 targets and 17 two-
domain CASP6 targets (58 targets in total). Since this evaluation set contains
only comparative modeling and fold recognition targets (no new fold targets),
predictors based on templates have an advantage in this evaluation. DOMpro
achieved a higher sensitivity and specificity than one method that uses homolo-
gous information and all other ab initio predictors averaged over all of the targets
(See Table I and Figure 5). However, the performance of the top three ab initio
predictors (DOMpro, Globplot, and Dompred-DPS) is close. The specificity and
sensitivity of DOMpro is 4-5% higher than the template-based method ADDA,
similar to Dompred-Domssea, and lower than other template-based methods
such as Dopro, SSEP-Domain, and Robetta-Ginzu.
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Figure 5. Sensitivity vs specificity in CAFASP-4

4. Conclusions

We have created DOMpro, an ab initio predictor of protein domains using a
recursive neural network that leverages evolutionary information in the form
of profiles and predicted secondary structure and relative solvent accessibility.
The raw output of the 1D-RNN in DOMpro goes through a post-processing
procedure to produce the final domain segmentation and assignment. In the
CAFASP-4 evaluation, DOMpro was ranked among the top ab initio domain
predictors.

Despite recent advances, domain prediction remains a challenge. A 25% accu-
racy on the prediction of two-domain proteins is encouraging but not sufficient
for most applications and clearly there is room for improvement. We are cur-
rently adding a module to DOMpro which would incorporate known domain
assignments for proteins that are homologous to structures in the PDB and
CATH databases. We are also training ensembles of predictors, although prelim-
inary experiments so far have not lead to significant improvements. In addition,
we are focusing on the prediction/classification of discontinuous domains. To
overcome the current limitations of DOMpro and the naive assignment of domain
numbers, we are experimenting with the use of predicted contact maps, as well
as domain length statistics, in the assignment of domain boundaries and the
creation of domains consisting of multiple non-adjacent domain segments. The
contact maps are predicted using 2D-RNNs (Baldi and Pollastri, 2003; Pollastri
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and Baldi, 2002). The basic idea is that domains should be associated with a rela-
tively higher density of contacts. Following this logic, two discontinuous segments
having the proper length statistics and a sufficient number of inter-segment
residue-residue contacts would be predicted to be in the same domain.
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