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ABSTRACT
Motivation: Protein β-sheets play a fundamental role in
protein structure, function, evolution and bioengineering.
Accurate prediction and assembly of protein β-sheets, how-
ever, remains challenging because protein β-sheets require
formation of hydrogen bonds between linearly distant residues.
Previous approaches for predicting β-sheet topological fea-
tures, such as β-strand alignments, in general have not
exploited the global covariation and constraints characteristic
of β-sheet architectures.
Results: We propose a modular approach to the problem of
predicting/assembling protein β-sheets in a chain by integ-
rating both local and global constraints in three steps. The
first step uses recursive neural networks to predict pairing
probabilities for all pairs of interstrand β-residues from pro-
file, secondary structure and solvent accessibility information.
The second step applies dynamic programming techniques
to these probabilities to derive binding pseudoenergies and
optimal alignments between all pairs of β-strands. Finally,
the third step uses graph matching algorithms to predict the
β-sheet architecture of the protein by optimizing the global
pseudoenergy while enforcing strong global β-strand pairing
constraints. The approach is evaluated using cross-validation
methods on a large non-homologous dataset and yields
significant improvements over previous methods.
Availability: http://www.igb.uci.edu/servers/psss.html
Contact: pfbaldi@ics.uci.edu

1 INTRODUCTION
β-Sheets are a fundamental component of protein architec-
tures, >75% of all protein domains in the Protein Data
Bank (Bermanet al., 2000) containβ-sheets (Zhang and
Kim, 2000).β-Sheets are formed by the pairing of multiple
β-strands held together by characteristic patterns of hydro-
gen bonds running in parallel or antiparallel fashion (Fig. 1).
These patterns, which are essential forβ-sheet and protein sta-
bility (Smith and Regan, 1997), involve interactions between
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Fig. 1. Illustration of interstrandβ-residue pairs and hydrogen-
bonding pattern in parallel and antiparallelβ-strands. Arrows show
the amide (N) to carbonyl (C) direction ofβ-strands. Hydrogen bonds
are represented by hatched blocks.

residues that are often separated by large distances along the
primary sequence.

Theβ-sheet topology or architecture of a protein, i.e. the
pairing organization of all theβ-strands contained in a given
protein, is essential for understanding its structure (Zhang and
Kim, 2000). Prediction ofβ-sheet topology from amino acid
sequence is very useful not only for predicting tertiary struc-
ture (Zaremba and Gregoret, 1999; Steward and Thornton,
2002; Ruczinskiet al., 2002; Rostet al., 2003) but also
for elucidating folding pathways (Merkel and Regan, 2000;
Mandel-Gutfreundet al., 2001) and designing new proteins
(Smith and Regan, 1995, 1997; Kortemmeet al., 1998; Kuhl-
manet al., 2003). Many experimental and theoretical studies
have been conducted to better understand the formation and
stability of β-sheets. For instance, Minor and Kim (1994)
report that intrinsicβ-sheet propensities of different amino
acids contribute to the local structure and stability ofβ-sheets
and that the magnitude and order ofβ-sheet propensities
depend on the local sequence and structural context. Statistical
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studies (Lifson and Sander, 1980; Wouters and Curmi, 1995)
reveal non-random distribution and pairing preferences of
residue pairs in alignedβ-strands, whereas evolutionary
conservation ofβ-residue interactions suggests that pairing
preferences depend on structural context, such as solvent
accessibility (Zaremba and Gregoret, 1999). Clearly, favor-
able side-chain interactions between residue pairs contribute
toβ-sheet stability (Smith and Regan, 1995; Hutchinsonet al.,
1998). However, the evolutionary pressure to maintain com-
plementarity between pairs on neighboring strands appear to
be weak (Mandel-Gutfreundet al., 2001) and the overall pair-
ing preferences are not very strong and appear to be modulated
by the local environment to a high degree.

Several methods, mostly statistical data-driven approaches,
have been proposed to predict topological features ofβ-sheets
with moderate accuracy (Rostet al., 2003). An early method
(Hubbard, 1994) uses a statistical potential approach to pre-
dictβ-strand alignments with an accuracy level of∼35–45%.
Asogawa (1997) proposes to use pairwise statistical poten-
tials ofβ-residue pairs to improveβ-sheet secondary structure
prediction by considering clusters ofβ-residue contacts. Pair-
wise statistical potentials are used also in the works of Zhu and
Braun (1999) to identify up to 35% of native strand alignments
from alternative strand alignments. Baldiet al. (2000), used
elaborate neural networks to improve the prediction accur-
acy of interstrandβ-residue contacts, but the method is not
extended to the prediction of strand pairings, strand align-
ments andβ-sheet topologies. Using an information theoretic
approach, Steward and Thornton (2002) report an accuracy of
45–48% for strand alignments inβ-triplets and 31–37% for
any native strand alignments. Although encouraging, all these
approaches seem to leave room for major improvements.

These approaches, in particular, fail to exploit systemat-
ically the global covariation and constraints characteristic
of β-sheet architectures. Instead of treating each pair of
β-residues orβ-strands independent of each other, as pre-
vious methods do, one ought to leverageβ-sheet constraints,
such as the fact that eachβ residue has at most two partners,
that neighboringβ-residues in a strand are paired sequentially
in parallel or antiparallel fashion with another strand, and that
eachβ-strand has at least one partner strand and rarely more
than two or three partner strands.

In the present study, we develop a novel modular approach
for predicting interstrandβ-residue pairings,β-strand pair-
ings, β-strand alignments andβ-sheet topology altogether
from scratch by integrating both local and global constraints
in three steps. First, 2D-recursive neural networks (2D-RNN)
(Baldi and Pollastri, 2003) are trained to predict pairing
probabilities of interstrandβ-residue pairs using profile,
secondary structure and relative solvent accessibility inform-
ation. Second, dynamic programming techniques are applied
to these probabilities to derive pairing pseudoenergies and
alignments between all pairs ofβ-strands. Third, weighted
graph matching algorithms are used to optimize the global

β-sheet architecture of the protein satisfying theβ-strand pair-
ing constraints. While interchainβ-sheets play an important
role in protein–protein interactions and complex formation
(Douet al., 2004), it is worth noting that here, consistent with
the available literature, we focus exclusively on the already
challenging prediction of intrachainβ-sheets. However, we
believe that the methods developed here can be adapted to the
problem of predicting both intrachain and interchainβ-sheets
and training datasets for the latter are available through the
ICBS database (Douet al., 2004).

2 MATERIALS AND METHODS
2.1 Data
The dataset is extracted from the Protein Data Bank of May
2004. Only structures determined by X-ray diffraction and
having resolution better than 2.5 Å are retained. Chains
containing unknown or non-standard amino acids, back-
bone interruptions or whose length is<50 amino acids are
excluded. DSSP (Kabsch and Sander, 1983) is used to assign
secondary structure and relative solvent accessibility values to
each residue. Residues with secondary structure E (extended
strand) and B (isolatedβ-bridge) are consideredβ-residues.
Eachβ-residue may have 0, 1 or 2 partners according to DSSP.
A consistency check is used to remove chains containing
non-consistentβ-residue pair assignments (ei , ej ), whereby
ei pairs withej , but ej does not pairs withei according to
DSSP. A filtering procedure is used to select the chains that
contain 10–100β-residues, of which 90% must have at least
one partner. The redundancy in the dataset is reduced by the
UniqueProt (Mika and Rost, 2003) with a HSSP threshold of
0, which corresponds to sequence identity of roughly 15–20%.

The final dataset contains 916 chains corresponding to
187 516 residues. Of these, 26% (48 996) areβ-residues par-
ticipating in 31 638 interstrand residue pairs. The dataset has
10 745β-strands with an average length of 4.6 residues and
8172β-strand pairs, including 4519 antiparallel pairs, 2214
parallel pairs and 1439 pairs involving isolatedβ-bridges.
These strand pairs form 2533β-sheets. The average sequence
separation between residue pairs and strand pairs is 43 and 40,
respectively. Sequence separation histograms are displayed in
Figure 2a and 2b. Figure 2c and 2d shows that the number of
interstrand residue pairs or strand pairs has a strong correla-
tion with the number ofβ-residues or strands in the chain, as
expected.

To leverage evolutionary information, PSI-BLAST
(Altschul et al., 1997) is used to generate profiles by aligning
all chains against the Non-Redundant (NR) database, as
in Pollastri et al. (2001). Finally, the dataset is evenly
and randomly split into 10 folds to perform 10-fold cross-
validation studies. The final dataset (β-sheet 916) and the
splitted folds are available through http://www.igb.uci.edu/
servers/psss.html
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Fig. 2. (a) Amino acid separation betweenβ-residue pairs (mean= 43, minimum= 3, maximum= 626 and standard deviation= 49).
(b) Amino acid separation betweenβ-strand pairs (mean= 40, minimum= 2, maximum= 626 and standard deviation= 54).(c) Scatterplot
of number ofβ-residue pairs (y) versus number ofβ-residues (x) per chain. The correlation coefficient is 0.98. Linear regression given by:
y = 0.66x − 0.65.(d) Scatterplot of number ofβ-strand pairs (y) versus number ofβ-strands (x) per chain. The correlation coefficient is
0.97. Linear regression given by:y = 0.74x + 0.27.

2.2 Prediction of β-residue pairs using
2D-RNNs

Like contact map prediction (Fariselliet al., 2001; Pollastri
and Baldi, 2002; Shao and Bystroff, 2003; MacCallum, 2004;
Punta and Rost, 2005), we treat prediction of interstrand
residue pairing as a binary classification problem on a 2D
grid. For each chain, our input is a 2D square matrixI, where
the size ofI is equal to the number ofβ-residues in the chain
and each entryIi,j is a vector of dimension 251 encoding
the local context information ofβ-residues (ei , ej ), as well as
their separation. Specifically, we use a local window of size
5 aroundei andej . Each position in the window corresponds
to a vector of length 25 with 20 positions for the amino acid
profile, 3 positions for the secondary structure (Helix, Sheet
and Coil), and 2 positions for the relative solvent accessibil-
ity (buried or exposed at 25% threshold). The two windows
correspond to 250= 25× 5× 2 entries. One additional entry
represents the sequence separation betweenei andej .

The training target is a binary matrixT, whereby eachTi,j

equals 1 or 0 depending on whetherβ-residueei andej are
paired or not. Figures 3 and 4 show protein 1VJG in the PDB
and its corresponding target matrix which nicely displays the
constraints and directions (parallel or antiparallel) of strand
pairing. Neural networks or other machine learning methods

can be trained on the dataset to learn a mapping from the input
matrixI onto an output matrixO, wherebyOi,j is the predicted
probability thatei andej are paired. The goal is to make the
output matrixO as close as possible to the target matrixT.
The standard approach with feed-forward neural networks is
to treat each pair (ei ,ej ) independently and to learn a mapping
from a series of independent (Ii,j ,Ti,j ) examples (Baldiet al.,
2000). This simplified approach, however, does not explicitly
leverage covariations and interactions betweenβ-residue pairs
and might not effectively enforce the constraints ofβ-residue
and strand pairings. Here we use a 2D-RNN architecture to
exploit covariations and constraints betweenβ-residue pairs
globally. This 2D-RNN architecture, previously used in con-
tact map prediction, is described in detail in Baldi and Pollastri
(2003) and is not reproduced here for lack of space. Under
this architecture, the outputOi,j depends on the entire input
matrix I instead ofIi,j only. As for feed-forward neural net-
works, learning in a 2D-RNN is implemented using gradient
descent. In the simulations, the outputs of five models are
averaged in an ensemble to produce the predicted probabil-
ity matrix O. Finally, it is important to notice that because
our approach is modular—it is not constrained in any way to
the use of recursive or even feed-forward neural networks—
the output of any algorithm that produces an estimate of the
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Fig. 3. Protein 1VJG is anα/β protein with seven strands. Strands
1, 2, 3, 6 and 7 form a parallelβ-sheet. Strands 4 and 5 form an
antiparallelβ-sheet. The parallelβ-sheet forms the hydrophobic core
and is surrounded by tightly packedα-helices.

Fig. 4. Interstrandβ-residue pairing map of protein 1VJG. The seven
strands are ordered along the vertical and horizontal axis. Alternating
colors (black and green) are used to distinguish adjacent strands in
sequence order. The three numbers associated with each strand on
the left are strand number and its starting and ending position along
the chain. The map is symmetric. Each blue square represents a
nativeβ-residue pairing. A line segment parallel to the main diagonal
corresponds to the alignment of a parallel strand pair. A line segment
perpendicular to the main diagonal corresponds to the alignment of
an antiparallel strand pair. Each row or column has at most two blue
squares reflecting the constraint that one residue has at most two
partners.

pairing probabilitiesOij can be used as input for the second
and third steps described below.

SinceI and T are presented to the 2D-RNN as a whole
during training, the network can identify pairing constraints
encoded in these matrices beyond the local environment of
each residue. As a result, by thresholding the values of the

Fig. 5. Predictedβ-residue pairing map of 1VJG. Upper triangle
(blue) is the true map and lower triangle (red) is the predicted map.
The predicted pairs form three segments parallel to the main diagonal
corresponding to the true parallel strand pair (1,2), (1,3) and (3,6).
Two residue pairs in the true antiparallel strand pair (4,5) are also
recalled. One of the two residue pairs in the parallel strand (6,7) is
correctly predicted. There are two false positives in strand pair (1,3)
and (3,6). For instance, one residue in strand 3 is wrongly predicted
as having two partners in strand 1. This error can be detected by
checking pairing constraints: a residue can have up to two partners
in total, and at most one partner in any single strand. A few residue
pairs between strands 1 and 2, which are missing in the predicted
map, can be inferred once strands 1 and 2 are predicted to pair.

outputO, the predicted interstrand residue pairs tend to form
line segments parallel or perpendicular to the main diagonal,
which correspond to parallel or antiparallel strand pairs. This
suggests that aggregate prediction ofβ-residue pairings can
be used to predictβ-strand pairings, pairing directions and
alignments. Figure 5 shows the predicted interstrand residue
pairs of 1VJG with a 0.15 threshold. The predicted map recalls
mostβ-residue pairs and satisfies pairing constraints with few
violations. It is worth noting that post-prediction inferences
can be used to further enforce some constraints and retrieve
some of the missing residue pairs. The predicted interstrand
β-residue map can be used directly to inferβ-strand pairs. One
simple approach we tested is to consider two strands paired
if any two of their residues are predicted to be paired. In
isolation, however, such an approach cannot be optimal since
it disregards global constraints on the number of partners a
strand can have (Section 2.4).

2.3 Pseudoenergy for β-strand alignment
For each pair of strands, we can define an optimal alignment
and an overall alignment score using dynamic programming
techniques in parallel and antiparallel directions with local
scores or penalties derived from the matrixO of residue-
pairing probabilities. Additional intrastrand gap penalties
corresponding toβ-bulges, as well as penalties for gaps at
the end of the strands, can be introduced. The penalty for the
bulges can be derived from their frequency. Sinceβ-bulges
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Fig. 6. (a) Predicted pseudoenergy matrixW of the best alignments of all strand pairs of protein 1VJG. Gray numbers denote the pseudoenergy
of the alignments of true strand pairs.(b) β-sheet assembly process using graph algorithm. It takes five steps to assemble seven strands into
two β-sheets using the energy matrix in (a). In step 1–4, the strand pair with maximum energy is added. In step 5, pair(2,3) has higher energy
than pair(6,7). But it is not chosen because strands 2 and 3 have already been selected in previous steps.

tend to be isolated and rare (only 14% of paired strands con-
tain a bulge, and 90% of these contain only a single bulge),
to a first-order approximation here we do not allow bulges in
the alignments by setting the bulge penalty to infinity. This is
also consistent with previous studies (Hubbard, 1994; Zhu and
Braun, 1999; Steward and Thornton, 2002). Gaps at the edges
of the strands are allowed but are not penalized (penalty= 0).
Under these assumptions, we can simply search exhaustively
through all possible alignments by ‘sliding’ one strand along
the other, in both parallel and antiparallel fashion. Assum-
ing in addition that two paired strands must have at least one
residue pairing, two strands with lengthm ≥ 2 andn ≥ 2
have 2(m + n − 1) possible alignments, counting parallel
and antiparallel directions. If one strand is an isolated bridge
(m = 1 or n = 1), then there are max(m,n) possible align-
ments. Without consideringβ-bulges, one alignment can be
uniquely specified by its direction (parallel, antiparallel or
isolated bridge) and by one interstrand residue pair.

To discriminate native alignments from alternative ones, the
binding pseudoenergyW(A[Er ,Es]) of each alignmentA of
each pair of strandsEr andEs can be computed by adding
the pseudoenergies of each pair of residuesi and j in the

alignment, derived from the pairing probabilitiesOij , or their
logarithm logOij . The binding pseudoenergyWrs of a pair
of strands can then be defined by taking the maximum over
all their possible alignments:Wrs = maxA W(A[Er ,Es]).
For any pair of strandsr ands in a given protein chain, the
pseudoenergy is used to identify the best putative alignment,
i.e. the one with maximal pseudoenergyWrs , between these
two strands. Figure 6a shows the resulting pseudoenergy mat-
rix W = (Wrs) for the best alignments between all strand
pairs of protein 1VJG. Note how the native strand pairs tend
to have higher energy scores suggesting that the pseudoenergy
can be used effectively to score and rank strand pairs.

2.4 Prediction of β-strand pairs and β-sheet
topology using graph algorithms

Unlike previous methods (Hubbard, 1994; Zhu and Braun,
1999; Steward and Thornton, 2002) which treat strand pairs
independent of each other, here prediction of strand pairing
and alignment takes into account additional physical con-
straints characteristic ofβ-sheet architectures. To illustrate
β-sheet topology and its constraints, we use schematic dia-
grams (similar to Branden and Tooze, 1999) whereβ-strands
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Fig. 7. Schematic diagram ofβ-sheet topology of protein 1VJG.(a) Unpaired strands in sequence order showing the starting and ending
positions of the seven strands.(b) Topology ofβ-sheets: paired strands in eachβ-sheet are aligned side by side. This diagram includes two
β-sheets consisting of strands 1,2,3,6 and 7 and strands 4 and 5.

are represented by rectangles of length proportional to the
length of the strand. Figure 7 shows the diagram of 1VJG.
Lines with arrows connect adjacent strands in sequence order
from the N-terminus to the C-terminus. Such schematic dia-
grams readily reveal several pairing constraints forβ-sheet
architectures. First, each strand has two edges available for
pairing with other strands and, as a result, aβ-residue can
have at most two partners. It is important to note that this
does not imply that a strand can pair at most with two other
strands, since a long strand may pair with several short strands
on either side. Second, one strand can pair only with one side
of another strand sequentially in a parallel or an antiparal-
lel fashion. If two strands pair with the same side of another
strand, no overlap is allowed. Third, all strands must have at
least one strand partner (ignoring interchain pairings) and we
impose the additional condition that they should have at most
three strand partners. This condition is not absolute but it is
very reasonable since 98.6% of strands have 1, 2 or 3 partners
in the large non-redundant dataset. We letC denote all these
constraints.

With these constraints in mind, we develop graph match-
ing algorithms to infer strand pairings and overallβ-sheet
architecture from the matrixW of pseudoenergies of the best
alignments of all strands pairs in a given chain. This pseudoen-
ergy matrix defines a completely connected and weighted
strand pairing graph (SPG), where vertices represent strands,
edges represent possible pairing relations and weights optimal
pairing energies. The fully connected SPG of course does not
satisfy the set of constraintsC. To predict theβ-sheet topology,
the goal is to prune the complete SPG to derive the true SPG

(Fig. 8), whereβ-sheets appear as maximal connected com-
ponents. These components are to be derived by maximizing
the global pseudoenergy while satisfying all the strand pairing
constraints above, i.e. by maximizing

∑
S Wrs taken over all

subsetsS of edges that satisfyC. The global pseudoenergy of
an architecture is the sum of the pseudoenergies of each of its
β-sheets, and the pseudoenergy of aβ-sheet is the sum of the
pseudoenergies of all the strand pairs it comprises. To address
this constrained optimization problem, we first use a greedy
heuristic approach as given in the following table.

Start with a complete SPG with weight matrixW. Order
all the edges according to the weights into a listL.
∅ → S. S is the set of chosen edges.
Repeat

Remove one edgee with maximum weight fromL.
If both vertices ofe are not inS, adde into S.
If both vertices ofe are inS, discarde.
If one vertex ofe is in S, align the strand of the vertex
with the strand of another vertex not inS using their best
alignment. If the pair and its alignment satisfy the strand
pairing constraintsC, adde into S.
Otherwise discarde.

Until all vertices inG appear inS once.

The greedy algorithm has time complexityO(N2 logN),
whereN is the number of strands. After converging, the edges
and vertices inS constitute a spanning subgraphG∗ of G.
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Fig. 8. Strand Pairing Graph of protein 1VJG.(a) The complete SPG.
Gray edges denote true strand pairs.(b) The true weighted SPG. Two
components (1,2,3,6 and 7) and (4 and 5) correspond to twoβ-sheets.
The weights are the pseudoenergy of the best alignments of strand
pairs.

Connected components inG∗ are in 1:1 correspondence with
the proteinβ-sheets and provide the global predictedβ-sheet
architecture. Figure 6 illustrates how the algorithm assembles
the strands of protein 1VJG.

By treating β-sheets as spanning trees of complete
SPGs, a variant of the well-known algorithm for finding
minimum/maximum spanning tree (MST) (Even, 1979),
Kruskal’s algorithm (Kruskal, 1956), is also used to pre-
dict β-sheets (trees) with maximum pseudoenergy. The only
difference between this constrained MST algorithm and the
previous greedy algorithm is that it does not always dis-
card edgee when its adjacent vertices are already in the
setS. Instead, it addse into L if its two vertices belong to
two disconnected components and the alignment satisfies the
strand pairing constraints. Not surprisingly, this algorithm
tends to choose more strand pairs (edges) than the greedy
graph algorithm. It is worth noting that both the greedy and
constrained MST algorithms as described do not allow for
cycles and all the components they produce are trees. This
approximation is not entirely correct in the case of circular
β-sheets, such asβ-barrels. To handleβ-barrels, we are cur-
rently modifying these algorithms to allow up to one cycle in
each component.

3 RESULTS AND DISCUSSION
The performance ofβ-residue pairing prediction is assessed
using a variety of standard measures including: area under
ROC curve, true positive rate [TPR= TP/(TP+ FN)], at
5% false positive rate [FPR= FP/(FP+ TN)], specificity
[TP/(TP+ FP)], sensitivity [TP/(TP+ FN)] and correlation
coefficient [(TP×TN−FP×FN)/((TP+FN)(TP+FP)(TN+
FN)(TN + FP))1/2], and compared with predictions associ-
ated with the base-line and with a general purpose contact
map predictor. At the break-even point where the total num-
ber of predictedβ-residue pairs is equal to the true number of
β-residue pairs, the specificity and sensitivity of interstrand
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Fig. 9. ROC curve of prediction of interstrandβ-residue pairs using
theβ-residue pairing predictor and CMAPpro.

β-residue pairings are equal to 41% with a correlation coef-
ficient of 0.4. The accuracy of the base-line predictor (the
number of trueβ-residue pairs/total number of interstrandβ-
residue pairs) is 2.3%. Thus, the improvement factor, i.e. the
ratio between the accuracy (specificity or sensitivity) of our
method over the base-line (Fariselliet al., 2001), is 17.8.
To the best of our knowledge, only one method in the lit-
erature (Baldiet al., 2000) reports quantitive evaluation of
β-residue pairing prediction. However, it reports only sepci-
ficity without mentioning the corresponding sensitivity, thus a
direct comparison cannot be made. However, we can compare
theβ-residue pairing predictor with a general purpose contact
map predictor (Pollastri and Baldi, 2002) focusing exclusively
on β-residue pairings. We use a pretrained 8 Å contact map
predictor (CMAPpro) to predict contacts for all chains in the
same dataset. To make the comparison even more stringent,
we do not take into consideration any homology between the
current dataset and the dataset used to train (CMAPpro). We
then extract the contact probabilities forβ-residue pairings
from the full predicted contact map and evaluate them using
the same measures. At the break-even point, the specificity and
sensitivity of CMAPpro are equal to 27% and the correlation
coefficient is 0.26. Thus, our method improves the specificity
and sensitivity of CMAPpro restricted toβ-residues by 14%.
The area under the ROC curve for the beta-pairing predictor is
0.86 versus 0.80 for CMAPpro (Fig. 9). At 5% FPR, TPR for
the beta-pairing predictor is 58% versus 42% for CMAPpro.
Thus the specializedβ-residue pairing predictor significantly
improves the predictions of our general purpose contact map
predictor restricted toβ-strands, consistently with previous
expectations (Rostet al., 2003).

The correlation coefficients of strand pairing by the greedy
and constrained MST graph algorithms are virtually identical
(0.502 and 0.503, respectively). The specificity and sensit-
ivity of strand pairing using the greedy graph algorithm are
59 and 54%, respectively. In contrast, the specificity and sens-
itivity of the naive algorithm that always pairs sequentially
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adjacent strands are 42 and 50%, respectively. Thus, around
similar operating regimes, the greedy graph algorithm yields
improvements of 17% in specificity and 4% in sensitivity over
the naive algorithm. The small improvement in sensitivity
is still very significant because 16% of correctly predicted
strand pairs are non-adjacent strand pairs. The constrained
MST graph algorithm has specificity and sensitivity of 53
and 59%, respectively. Its sensitivity is 9% higher than the
naive algorithm and 20% of correctly predicted strand pairs
are non-adjacent strand pairs.

Using the pseudoenergy to align strand predicted to be
paired by the greedy graph algorithm, pairing directions (par-
allel, antiparallel or isolated bridge) of 93% of the correctly
predicted strand pairs are correctly identified, 72% of which
are correctly aligned (71% of parallel pairs, 69% of antiparal-
lel pairs and 88% of strand pairs involving isolated bridges).
The constrained MST graph algorithm yields similar results.

To further evaluate the ability of the pseudoenergy to dis-
criminate true alignments from false alignments, we use it to
align all native strand pairs. Pairing directions of 84% native
pairs are correctly predicted. Considering only parallel and
antiparallel pairs, the pairing directions of 82% of these pairs
are predicted correctly, which yields a 15% improvement over
the 67% precision achieved by the trivial algorithm which
labels all pairs as being antiparallel. Among all strand pairs
with correctly predicted directions, 66% of them are aligned
correctly (66% of parallel pairs and 63% of antiparallel pairs
and 72% of isolated bridges). In comparison, on different
datasets, the statistical potential approach in Hubbard (1994)
aligns 35–45% of strand pairs correctly, when pairing direc-
tions are correctly predicted. If we assume that all pairing
directions are known, as some previous methods do (Zhu and
Braun, 1999; Steward and Thornton, 2002), then 61% of all
native parallel pairs and 60% of all native antiparallel pairs are
aligned correctly. The pseudoenergy approach based on pair-
wise potentials in Zhu and Braun (1999) discriminates 35%
of native alignments from alternative alignments, assuming
pairing directions are known. Thus on a larger albeit different
dataset, the accuracy of the method presented here is signific-
antly higher than previous approaches. Assuming that pairing
direction and position of one strand is known, the information
theoretic approach of Steward and Thornton (2002), which
aligns the known strand with all subsequences in a±10 offset
around another strand to identify the best alignment, achieves
precisions of 48 and 45% for parallel and antiparallel pairs in
strand triplets, and 37 and 31% for arbitrary parallel and anti-
parallel pairs, respectively. Since our methods assume that the
position of the twoβ-strands under consideration is known—
in a purelyab initio setting, this would have to be predicted
(Rost and Sander, 1993; Jones, 1999; Pollastriet al., 2001)—
the alignment accuracy of our methods cannot be compared
directly with the information theoretic approach. However,
our results show that it is easier to align parallel strand pairs
than antiparallel ones, which agrees with the observations

Alignment offset of antiparallel strand pairs
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Fig. 10. Histogram of alignment offsets of antiparallel strand pairs.
A perfect alignment corresponds to a 0 offset.

Alignment offset of parallel strand pairs
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Fig. 11. Histogram of alignment offsets of parallel strand pairs.
A perfect alignment corresponds to a 0 offset.

derived using the information theoretic approach. Figures 10
and 11 show the histograms of alignment offsets of all paral-
lel and antiparallel pairs where paring directions are correctly
predicted. No simple metric is as yet available for evaluat-
ing the prediction ofβ-sheet topologies. Here we report the
strand pairing precision of predictedβ-sheets, i.e. the propor-
tion of correctly predicted strand pairs in eachβ-sheet. Using
the greedy graph algorithm, for instance, 51% of predicted
β-sheets haveβ-strand pairing precision>60%.

4 CONCLUSION
We have proposed a newab initio modular approach to the
problem of predicting and assemblingβ-sheets. The method
is modular in the sense that alternative algorithms can be
‘plugged in’ for each one of its stages, for instance in order to
predict residue pairing probabilities. Starting fromβ-residue
pairing probabilities, the method provides an integrated pre-
diction of β-sheet architectures by predictingβ-strand pairs,
β-strand alignments andβ-sheets assembly. The pseudoen-
ergy derived from pairing probabilities ofβ-residue pairs
can rather accurately predictβ-strand alignments and score
β-strand pairs. The greedy and constrained MST graph
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algorithms are able to predict strand pair andβ-sheet topo-
logy from pseudoenergy matrices by globally optimizing the
pseudoenergy ofβ-sheets. While the performance of, for
instance,β-strand alignment appears significantly improved
over previous statistical data-driven approaches, it is clear that
even further improvements should be possible in each one of
the three stages. For instance, in the first step, more inform-
ation about the interstrand sequence can be included (Punta
and Rost, 2005). In the second step, gap penalties forβ-bulges
can be taken into account. In the third step, graph algorithms
that allow cycles ought to recover cyclicβ-sheets. Further-
more, constrained optimization of the binding pseudoenergy
derived here is at best an approximation that will need to be
refined to include other packing constraints associated with
other secondary structure elements.

β-Sheets have remained one of the main stumbling blocks of
protein structure prediction over the years. Thus, new methods
for the accurate prediction ofβ-sheets may lead to noticeable
improvements in the study of protein structure and folding
and in protein design. Our results suggests that the methods
presented here can be combined with contact map prediction
to generate more accurate contact maps, which in turn can
be used in fold recognition and 3D reconstruction. Accurate
β-residue andβ-strand pairings may also provide strong con-
straints for improvingab initio sampling of tertiary structures
and derive energy terms to help select near-native structures
from decoys.
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