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ABSTRACT + N + N c
Motivation: Protein B-sheets play a fundamental role in _ _ c=o

protein structure, function, evolution and bioengineering. H N\C H \ C/

Accurate prediction and assembly of protein g-sheets, how- o:c/' * \O:c/‘ * \OcNiH

ever, remains challenging because protein g-sheets require N . N—Hl i O:C,/

formation of hydrogen bonds between linearly distant residues. Parallel c/ C/ e

Previous approaches for predicting g-sheet topological fea- g];‘?rrs”a”d% QC,:O/ N ’

tures, such as B-strand alignments, in general have not H*N/ “ H*N/ \e—0

exploited the global covariation and constraints characteristic \Coc \Coc C{x

of B-sheet architectures. o= C/, 0= C/' \‘NfH

Results: We propose a modular approach to the problem of \NfH\\\\\\\ N—H 11l O=C- | Antiparalld
predicting/assembling protein 8-sheets in a chain by integ- C{x c, \Ca lgtgi;strand
rating both local and global constraints in three steps. The \/C’:O \/C,:O““““ H— N/

first step uses recursive neural networks to predict pairing
probabilities for all pairs of interstrand g-residues from pro-
file, secondary structure and solvent accessibility information. ~ Fig. 1. lllustration of interstrandg-residue pairs and hydrogen-
The second step applies dynamic programming techniques bonding pattern in parallel anc_zl ant_iparalfblstrands. Arrows show
to these probabilities to derive binding pseudoenergies and the amide (N) to carbonyl (C) direction gfstrands. Hydrogen bonds
. . . . are represented by hatched blocks.
optimal alignments between all pairs of g-strands. Finally,
the third step uses graph matching algorithms to predict the
B-sheet architecture of the protein by optimizing the global
pseudoenergy while enforcing strong global B-strand pairing
constraints. The approach is evaluated using cross-validation
methods on a large non-homologous dataset and yields
significant improvements over previous methods.
Availability: http://www.igb.uci.edu/servers/psss.htmi
Contact: pfbaldi@ics.uci.edu

residues that are often separated by large distances along the
primary sequence.

The B-sheet topology or architecture of a protein, i.e. the
pairing organization of all thg-strands contained in a given
protein, is essential for understanding its structure (Zhang and
Kim, 2000). Prediction oB-sheet topology from amino acid
sequence is very useful not only for predicting tertiary struc-
ture (Zaremba and Gregoret, 1999; Steward and Thornton,
1 INTRODUCTION 2002; Ruczinskiet al., 2002; Rostet al., 2003) but also
B-Sheets are a fundamental component of protein architeder elucidating folding pathways (Merkel and Regan, 2000;
tures, >75% of all protein domains in the Protein Data Mandel-Gutfreunckt al., 2001) and designing new proteins
Bank (Bermanet al., 2000) containg-sheets (Zhang and (Smith and Regan, 1995, 1997; Kortematel., 1998; Kuhl-

Kim, 2000). 8-Sheets are formed by the pairing of multiple manet al., 2003). Many experimental and theoretical studies
B-strands held together by characteristic patterns of hydronave been conducted to better understand the formation and
gen bonds running in parallel or antiparallel fashion (Fig. 1).stability of g-sheets. For instance, Minor and Kim (1994)
These patterns, which are essentiaffesheet and protein sta- report that intrinsics-sheet propensities of different amino
bility (Smith and Regan, 1997), involve interactions betweenacids contribute to the local structure and stabilityesheets

and that the magnitude and order gfsheet propensities
*To whom correspondence should be addressed. depend onthelocal sequence and structural context. Statistical
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studies (Lifson and Sander, 1980; Wouters and Curmi, 19953-sheet architecture of the protein satisfyingghstrand pair-
reveal non-random distribution and pairing preferences ofng constraints. While interchaif-sheets play an important
residue pairs in aligneg@-strands, whereas evolutionary role in protein—protein interactions and complex formation
conservation of3-residue interactions suggests that pairing(Douet al., 2004), it is worth noting that here, consistent with
preferences depend on structural context, such as solvetite available literature, we focus exclusively on the already
accessibility (Zaremba and Gregoret, 1999). Clearly, favorehallenging prediction of intrachaif-sheets. However, we
able side-chain interactions between residue pairs contributeelieve that the methods developed here can be adapted to the
to B-sheet stability (Smith and Regan, 1995; Hutchinsiah., problem of predicting both intrachain and interchaisheets
1998). However, the evolutionary pressure to maintain comand training datasets for the latter are available through the
plementarity between pairs on neighboring strands appear #€BS database (Dot al., 2004).
be weak (Mandel-Gutfreuret al., 2001) and the overall pair-
ing preferences are not very strong and appear to be modulated
by the local environment to a high degree. _ 2 MATERIALS AND METHODS

Several methods, mostly statistical data-driven approaches,
have been proposed to predict topological featurgsstieets 2.1 Data
with moderate accuracy (Rodtal., 2003). An early method The dataset is extracted from the Protein Data Bank of May
(Hubbard, 1994) uses a statistical potential approach to pre2004. Only structures determined by X-ray diffraction and
dict g-strand alignments with an accuracy levere85-45%.  having resolution better than 2.5 A are retained. Chains
Asogawa (1997) proposes to use pairwise statistical potereontaining unknown or non-standard amino acids, back-
tials of B8-residue pairs to imprové-sheet secondary structure bone interruptions or whose length 4660 amino acids are
prediction by considering clusters gfresidue contacts. Pair- excluded. DSSP (Kabsch and Sander, 1983) is used to assign
wise statistical potentials are used also in the works of Zhu andecondary structure and relative solvent accessibility values to
Braun (1999) to identify up to 35% of native strand alignmentseach residue. Residues with secondary structure E (extended
from alternative strand alignments. Bakdial. (2000), used strand) and B (isolated-bridge) are considereg-residues.
elaborate neural networks to improve the prediction accurEachg-residue may have 0, 1 or 2 partners according to DSSP.
acy of interstrangB-residue contacts, but the method is notA consistency check is used to remove chains containing
extended to the prediction of strand pairings, strand alignnon-consisteng-residue pair assignments; (¢;), whereby
ments angs-sheet topologies. Using an information theoretice; pairs withe;, bute; does not pairs witle; according to
approach, Steward and Thornton (2002) report an accuracy @SSP. A filtering procedure is used to select the chains that
45-48% for strand alignments Btriplets and 31-37% for contain 10-10@-residues, of which 90% must have at least
any native strand alignments. Although encouraging, all thesene partner. The redundancy in the dataset is reduced by the
approaches seem to leave room for major improvements. UniqueProt (Mika and Rost, 2003) with a HSSP threshold of

These approaches, in particular, fail to exploit systematO, which corresponds to sequence identity of roughly 15—-20%.
ically the global covariation and constraints characteristic The final dataset contains 916 chains corresponding to
of B-sheet architectures. Instead of treating each pair 0187 516 residues. Of these, 26% (48 996) guresidues par-
B-residues orB-strands independent of each other, as preticipating in 31 638 interstrand residue pairs. The dataset has
vious methods do, one ought to levergdysheet constraints, 10 7458-strands with an average length of 4.6 residues and
such as the fact that eaghresidue has at most two partners, 8172 g-strand pairs, including 4519 antiparallel pairs, 2214
that neighboringg-residues in a strand are paired sequentiallyparallel pairs and 1439 pairs involving isolatgebridges.
in parallel or antiparallel fashion with another strand, and thai hese strand pairs form 2583sheets. The average sequence
eachpg-strand has at least one partner strand and rarely morgeparation between residue pairs and strand pairs is 43 and 40,
than two or three partner strands. respectively. Sequence separation histograms are displayed in

In the present study, we develop a novel modular approachkigure 2a and 2b. Figure 2c and 2d shows that the number of
for predicting interstrangB-residue pairingsg-strand pair-  interstrand residue pairs or strand pairs has a strong correla-
ings, B-strand alignments anf-sheet topology altogether tion with the number of8-residues or strands in the chain, as
from scratch by integrating both local and global constraintsexpected.
in three steps. First, 2D-recursive neural networks (2D-RNN) To leverage evolutionary information, PSI-BLAST
(Baldi and Pollastri, 2003) are trained to predict pairing(Altschulet al., 1997) is used to generate profiles by aligning
probabilities of interstrand3-residue pairs using profile, all chains against the Non-Redundant (NR) database, as
secondary structure and relative solvent accessibility informin Pollastri et al. (2001). Finally, the dataset is evenly
ation. Second, dynamic programming techniques are applieand randomly split into 10 folds to perform 10-fold cross-
to these probabilities to derive pairing pseudoenergies andalidation studies. The final dataset-¢heet 916) and the
alignments between all pairs gfstrands. Third, weighted splitted folds are available through http://www.igb.uci.edu/
graph matching algorithms are used to optimize the globaservers/psss.html
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Fig. 2. (a) Amino acid separation betweghresidue pairs (meag 43, minimum= 3, maximum= 626 and standard deviatica 49).

(b) Amino acid separation betweg@nstrand pairs (meag: 40, minimum= 2, maximum= 626 and standard deviatiea 54).(c) Scatterplot

of number ofg-residue pairsy) versus number g8-residuesX) per chain. The correlation coefficient is 0.98. Linear regression given by:
y = 0.66v — 0.65.(d) Scatterplot of number g8-strand pairsX) versus number of-strands £) per chain. The correlation coefficient is
0.97. Linear regression given by:= 0.74x + 0.27.

2.2 Prediction of B-residue pairsusing can be trained on the dataset to learn a mapping from the input

2D-RNNs matrix| onto an output matri©0, whereby0; ; is the predicted
Like contact map prediction (Farisett al., 2001; Pollastri Probability thate; ande; are paired. The goal is to make the
and Baldi, 2002: Shao and Bystroff, 2003; MacCallum, 2004 0utput matrixO as close as possible to the target maifrix _
Punta and Rost, 2005), we treat prediction of interstrana_ he standard a_pproagh with feed-forward neural networ_ks is
residue pairing as a binary classification problem on a 20° reateach paif.¢;) independently and to learn a mapping
grid. For each chain, our input is a 2D square maiyikhere  10M aseries ofindependert, 7; ;) examples (Baldetal., -
the size ofl is equal to the number gf-residues in the chain  2000). This simplified approach, however, does not explicitly
and each entry; is a vector of dimension 251 encoding Ieverage covarlatlon_s and interactions betm&gemdue pairs
the local context information f-residuesd;, e;), as well as  and might not effectively enforce the constraintssefesidue
their separation. Specifically, we use a local window of size?"d Strand pairings. Here we use a 2D-RNN architecture to
5 arounde; ande;. Each position in the window corresponds exploit covariations and constraints betwegeresidue pairs
to a vector of length 25 with 20 positions for the amino acid9!oPally. This 2D-RNN architecture, previously used in con-
profile, 3 positions for the secondary structure (Helix, Sheefactmap prediction, is described in detail in Baldi and Pollastri

and Coil), and 2 positions for the relative solvent accessibil{2003) and is not reproduced here for lack of space. Under

ity (buried or exposed at 25% threshold). The two windowsthis architecture, the outpu?; ; depends on the entire input
matrix | instead off; ; only. As for feed-forward neural net-

correspond to 256 25 x 5 x 2 entries. One additional entry e o ; 1
works, learning in a 2D-RNN is implemented using gradient

represents the sequence separation beteesnde ;.
P d P / descent. In the simulations, the outputs of five models are

The training target is a binary matrix, whereby eaclT; ; h _ :
equals 1 or 0 depending on whethresiduee; ande; are averaged in an ensemble to produce the predicted probabil-

paired or not. Figures 3 and 4 show protein 1VJG in the PDBY Matrix O. Finally, it is important to notice that because

and its corresponding target matrix which nicely displays the?U" @proach is modular—itis not constrained in any way to
constraints and directions (parallel or antiparallel) of strand"€ US€ of recursive or even feed-forward neural networks—
pairing. Neural networks or other machine learning methodd€ output of any algorithm that produces an estimate of the
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Fig. 5. Predicteds-residue pairing map of 1VJG. Upper triangle

(blue) is the true map and lower triangle (red) is the predicted map.
The predicted pairs form three segments parallel to the main diagonal
corresponding to the true parallel strand pair (1,2), (1,3) and (3,6).
Fig. 3. Protein 1VJG is am/p protein with seven strands. Strands Two residue pairs in the true antiparallel strand pair (4,5) are also
1, 2, 3, 6 and 7 form a parallg@-sheet. Strands 4 and 5 form an recalled. One of the two residue pairs in the parallel strand (6,7) is
antiparallej-sheet. The parallgl-sheet forms the hydrophobic core correctly predicted. There are two false positives in strand pair (1,3)

and is surrounded by tightly packedhelices.

and (3,6). For instance, one residue in strand 3 is wrongly predicted
as having two partners in strand 1. This error can be detected by
checking pairing constraints: a residue can have up to two partners

in total, and at most one partner in any single strand. A few residue
1 [3:111 pairs between strands 1 and 2, which are missing in the predicted
....'-. map, can be inferred once strands 1 and 2 are predicted to pair.
2 [39:47]
outputO, the predicted interstrand residue pairs tend to form
line segments parallel or perpendicular to the main diagonal,
3 [73:79] ..'l..- which correspond to parallel or antiparallel strand pairs. This
4 [57:88] suggests that aggregate predictiongefesidue pairings can
5 [91:92] - be used to predigB-strand pairings, pairing directions and
6 [116:119] 'I.. alignments. Figure 5 shows the predicted interstrand residue
7 [154:155] pairs of 1VJG with a 0.15 threshold. The predicted map recalls

mostg-residue pairs and satisfies pairing constraints with few

Fig.4. InterstrangB-residue pairing map of protein 1VJG. The seven violations. It is worth noting that pOSt_predICtl.on mferenc?s
strands are ordered along the vertical and horizontal axis. Alternatinfjan be used t‘? fqrther epforce §0me constrqlnts gnd retrieve
colors (black and green) are used to distinguish adjacent strands #PMe Of the missing residue pairs. The predicted interstrand
sequence order. The three numbers associated with each strand Bri€sidue map can be used directly to irfestrand pairs. One

the left are strand number and its starting and ending position alongimple approach we tested is to consider two strands paired
the chain. The map is symmetric. Each blue square representsibiany two of their residues are predicted to be paired. In
nativeg-residue pairing. A line segment parallel to the main diagonalisolation, however, such an approach cannot be optimal since

corresponds to the alignment of a parallel strand pair. A line segment disregards global constraints on the number of partners a
perpendicular to the main diagonal corresponds to the alignment Gftrand can have (Section 2.4).
an antiparallel strand pair. Each row or column has at most two blue

squares reflecting the constraint that one residue has at most W23 Pseudoenergy for g-strand alignment

partners. For each pair of strands, we can define an optimal alignment
and an overall alignment score using dynamic programming
pairing probabilitiesD;; can be used as input for the secondtechniques in parallel and antiparallel directions with local
and third steps described below. scores or penalties derived from the matéxof residue-
Sincel andT are presented to the 2D-RNN as a whole pairing probabilities. Additional intrastrand gap penalties
during training, the network can identify pairing constraintscorresponding t@g-bulges, as well as penalties for gaps at
encoded in these matrices beyond the local environment dhe end of the strands, can be introduced. The penalty for the
each residue. As a result, by thresholding the values of thbulges can be derived from their frequency. Sigebulges
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Step 1: pair 4, 5 and connect th&tep 2: pair 1, 2 and connect them

Step 3: pair 1, 3 and connect 2, 3 Step 4: pair 3, 6 and connect 5, 6 Step 5: pair 6, 7 and connect them

Fig. 6. (a) Predicted pseudoenergy matvikof the best alignments of all strand pairs of protein 1VJG. Gray numbers denote the pseudoenergy

of the alignments of true strand paifb) S-sheet assembly process using graph algorithm. It takes five steps to assemble seven strands into
two B-sheets using the energy matrix in (a). In step 1-4, the strand pair with maximum energy is added. In step 5, pair(2,3) has higher energy
than pair(6,7). But it is not chosen because strands 2 and 3 have already been selected in previous steps.

tend to be isolated and rare (only 14% of paired strands coralignment, derived from the pairing probabiliti®s;, or their

tain a bulge, and 90% of these contain only a single bulge)logarithm logO;;. The binding pseudoenerdy,, of a pair

to a first-order approximation here we do not allow bulges inof strands can then be defined by taking the maximum over

the alignments by setting the bulge penalty to infinity. This isall their possible alignments¥,; = max4 W(A[E,, E;]).

also consistent with previous studies (Hubbard, 1994; Zhu anBor any pair of strands ands in a given protein chain, the

Braun, 1999; Steward and Thornton, 2002). Gaps at the edg@seudoenergy is used to identify the best putative alignment,

of the strands are allowed but are not penalized (peral®y. i.e. the one with maximal pseudoener@y,, between these

Under these assumptions, we can simply search exhaustivetyo strands. Figure 6a shows the resulting pseudoenergy mat-

through all possible alignments by ‘sliding’ one strand alongrix W = (W,,) for the best alignments between all strand

the other, in both parallel and antiparallel fashion. Assum-pairs of protein 1VJG. Note how the native strand pairs tend

ing in addition that two paired strands must have at least onto have higher energy scores suggesting that the pseudoenergy

residue pairing, two strands with length > 2 andrn > 2 can be used effectively to score and rank strand pairs.

have 2Zm + n — 1) possible alignments, counting parallel L .

and antiparallel directions. If one strand is an isolated bridgt,z'4 Prediction (_Jf B-strand palr_sand B-sheet

(m = 1 orn = 1), then there are max, n) possible align- topology using graph algorithms

ments. Without considering-bulges, one alignment can be Unlike previous methods (Hubbard, 1994; Zhu and Braun,

uniquely specified by its direction (parallel, antiparallel or 1999; Steward and Thornton, 2002) which treat strand pairs

isolated bridge) and by one interstrand residue pair. independent of each other, here prediction of strand pairing
To discriminate native alignments from alternative ones, theand alignment takes into account additional physical con-

binding pseudoenergy (A[E,, E,]) of each alignmen# of straints characteristic g8-sheet architectures. To illustrate

each pair of strand®, and E; can be computed by adding B-sheet topology and its constraints, we use schematic dia-

the pseudoenergies of each pair of residuesid j in the  grams (similar to Branden and Tooze, 1999) whestrands
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Fig. 7. Schematic diagram g#-sheet topology of protein 1VJGa) Unpaired strands in sequence order showing the starting and ending
positions of the seven strandb) Topology of 8-sheets: paired strands in eggtsheet are aligned side by side. This diagram includes two
B-sheets consisting of strands 1,2,3,6 and 7 and strands 4 and 5.

are represented by rectangles of length proportional to thé~ig. 8), whereg-sheets appear as maximal connected com-
length of the strand. Figure 7 shows the diagram of 1VJGponents. These components are to be derived by maximizing
Lines with arrows connect adjacent strands in sequence ordérne global pseudoenergy while satisfying all the strand pairing
from the N-terminus to the C-terminus. Such schematic diaconstraints above, i.e. by maximizig W,, taken over all
grams readily reveal several pairing constraintsffesheet  subsetss of edges that satisfg. The global pseudoenergy of
architectures. First, each strand has two edges available fan architecture is the sum of the pseudoenergies of each of its
pairing with other strands and, as a resul{3-sesidue can j-sheets, and the pseudoenergy gfsheet is the sum of the
have at most two partners. It is important to note that thigopseudoenergies of all the strand pairs it comprises. To address
does not imply that a strand can pair at most with two othethis constrained optimization problem, we first use a greedy
strands, since a long strand may pair with several short strandeeuristic approach as given in the following table.

on either side. Second, one strand can pair only with one side

of another strand sequentially in a parallel or an antiparal-
lel fashion. If two strands pair with the same side of anothestart with a complete SPG with weight matkix. Order
strand, no overlap is allowed. Third, all strands must have a4l the edges according to the weights into alist
least one strand partner (ignoring interchain pairings) and wg —, s. § is the set of chosen edges.

impose the additional condition that they should have at moskepeat

three strand partners. This condition is not absolute but it is Remove one edgewith maximum weight fromL .
very reasonable since 98.6% of strands have 1, 2 or 3 partners|f poth vertices of are not inS, adde into S.

in the large non-redundant dataset. WeQetenote all these If both vertices of are inS, discarde.

constraints. - If one vertex ofe is in S, align the strand of the vertex

~ With these constraints in mind, we develop graph match- with the strand of another vertex not$husing their best
ing algorithms to infer strand pairings and overgisheet alignment. If the pair and its alignment satisfy the strand

architecture from the matriw/ of pseudoenergies of the best  pairing constrainte, adde into S.
alignments of all strands pairs in a given chain. This pseudoen- Otherwise discard.

ergy matrix defines a completely connected and weightedntil all vertices inG appear inS once.
strand pairing graph (SPG), where vertices represent strands;
edges represent possible pairing relations and weights optimal

pairing energies. The fully connected SPG of course does not The greedy algorithm has time complexi®/(N?log N),
satisfy the set of constraints To predict theg-sheettopology, whereN is the number of strands. After converging, the edges
the goal is to prune the complete SPG to derive the true SP@nd vertices inS constitute a spanning subgragh of G.
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Fig.8. Strand Pairing Graph of protein 1VJ@) The complete SPG. FPR

Gray edges denote true strand pin3.The true weighted SPG. Two

components (1,2,3,6 and 7) and (4 and 5) correspond tg {sleeets.

The weights are the pseudoenergy of the best alignments of strarﬁg' 9. R_OC curve of predi_ction of interstrargiresidue pairs using
pairs. the g-residue pairing predictor and CMAPpro.

Connected components @i are in 1:1 correspondence with S-residue pairings are equal to 41% with a correlation coef-
the proteins-sheets and provide the global predicedheet  ficient of 0.4. The accuracy of the base-line predictor (the
architecture. Figure 6 illustrates how the algorithm assemblesumber of trugs-residue pairs/total number of interstrafid
the strands of protein 1VJG. residue pairs) is 2.3%. Thus, the improvement factor, i.e. the
By treating g-sheets as spanning trees of completeratio between the accuracy (specificity or sensitivity) of our
SPGs, a variant of the well-known algorithm for finding method over the base-line (Farisedi al., 2001), is 17.8.
minimum/maximum spanning tree (MST) (Even, 1979),To the best of our knowledge, only one method in the lit-
Kruskal’s algorithm (Kruskal, 1956), is also used to pre-erature (Baldiet al., 2000) reports quantitive evaluation of
dict 8-sheets (trees) with maximum pseudoenergy. The onlyB-residue pairing prediction. However, it reports only sepci-
difference between this constrained MST algorithm and thdicity without mentioning the corresponding sensitivity, thus a
previous greedy algorithm is that it does not always dis-direct comparison cannot be made. However, we can compare
card edgee when its adjacent vertices are already in thetheg-residue pairing predictor with a general purpose contact
setS. Instead, it adds into L if its two vertices belong to map predictor (Pollastri and Baldi, 2002) focusing exclusively
two disconnected components and the alignment satisfies tig g-residue pairings. We use a pretrained 8 A contact map
strand pairing constraints. Not surprisingly, this algorithmpredictor (CMAPpro) to predict contacts for all chains in the
tends to choose more strand pairs (edges) than the greedgme dataset. To make the comparison even more stringent,
graph algorithm. It is worth noting that both the greedy andwe do not take into consideration any homology between the
constrained MST algorithms as described do not allow forcurrent dataset and the dataset used to train (CMAPpro). We
cycles and all the components they produce are trees. Thiben extract the contact probabilities f8fresidue pairings
approximation is not entirely correct in the case of circularfrom the full predicted contact map and evaluate them using
B-sheets, such g&-barrels. To handlg-barrels, we are cur- the same measures. Atthe break-even point, the specificity and
rently modifying these algorithms to allow up to one cycle in sensitivity of CMAPpro are equal to 27% and the correlation
each component. coefficient is 0.26. Thus, our method improves the specificity
and sensitivity of CMAPpro restricted f-residues by 14%.
The area under the ROC curve for the beta-pairing predictor is
3 RESULTS AND DISCUSSION 0.86 versus 0.80 for CMAPpro (Fig. 9). At 5% FPR, TPR for
The performance of-residue pairing prediction is assessedthe beta-pairing predictor is 58% versus 42% for CMAPpro.
using a variety of standard measures including: area undérhus the specializef-residue pairing predictor significantly
ROC curve, true positive rate [TPR TP/(TP+ FN)], at  improves the predictions of our general purpose contact map
5% false positive rate [FPR= FP/(FP+ TN)], specificity = predictor restricted t@-strands, consistently with previous
[TP/(TP + FP)], sensitivity [TP/(TR+ FN)] and correlation expectations (Rost al., 2003).
coefficient [(TPx TN —FPx FN)/((TP+FN)(TP+FP)(TN+ The correlation coefficients of strand pairing by the greedy
FN)(TN + FP))?], and compared with predictions associ- and constrained MST graph algorithms are virtually identical
ated with the base-line and with a general purpose conta¢0.502 and 0.503, respectively). The specificity and sensit-
map predictor. At the break-even point where the total numivity of strand pairing using the greedy graph algorithm are
ber of predicte¢B-residue pairs is equal to the true number of 59 and 54%, respectively. In contrast, the specificity and sens-
B-residue pairs, the specificity and sensitivity of interstranditivity of the naive algorithm that always pairs sequentially
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adjacent strands are 42 and 50%, respectively. Thus, around
similar operating regimes, the greedy graph algorithm yields
improvements of 17% in specificity and 4% in sensitivity over -
the naive algorithm. The small improvement in sensitivity
is still very significant because 16% of correctly predicted
strand pairs are non-adjacent strand pairs. The constrained
MST graph algorithm has specificity and sensitivity of 53
and 59%, respectively. Its sensitivity is 9% higher than the H_
naive algorithm and 20% of correctly predicted strand pairs o : : : : :
are non-adjacent strand pairs. 10 -5 0 5 10
Using the pseudoenergy to align strand predicted to be
paired by the greedy graph algorithm, pairing directions (par-
a”el'. antiparallel or .ISOlated bridge) .Of 93% of the Correcﬂy Fig. 10. Histogram of alignment offsets of antiparallel strand pairs.
predicted straqd pairs are correctly |der_1t|f|ed, 72% Of.WhIChA perfect alignment corresponds 0 ofset.
are correctly aligned (71% of parallel pairs, 69% of antiparal-
lel pairs and 88% of strand pairs involving isolated bridges).
The constrained MST graph algorithm yields similar results.
To further evaluate the ability of the pseudoenergy to dis-
criminate true alignments from false alignments, we use it to
align all native strand pairs. Pairing directions of 84% native
pairs are correctly predicted. Considering only parallel and
antiparallel pairs, the pairing directions of 82% of these pairs
are predicted correctly, which yields a 15% improvement over § .
the 67% precision achieved by the trivial algorithm which /rr —I—,L
labels all pairs as being antiparallel. Among all strand pairs | T T
with correctly predicted directions, 66% of them are aligned -5 0 5
correctly (66% of parallel pairs and 63% of antiparallel pairs Alignment offset of parallel strand pairs
and 72% of isolated bridges). In comparison, on different
datasets, the statistical potential approach in Hubbard (1994j9g. 11. Histogram of alignment offsets of parallel strand pairs.
aligns 35-45% of strand pairs correctly, when pairing direcA perfect alignment corresponds 4 0 ofset.
tions are correctly predicted. If we assume that all pairing
directions are known, as some previous methods do (Zhu an
Braun, 1999; Steward and Thornton, 2002), then 61% of al
native parallel pairs and 60% of all native antiparallel pairs ar . . X L
aligned correctly. The pseudoenergy approach based on pa | ar_1d anﬂparal!el pairs wh_er_e paring dlrec_tlons are correctly
wise potentials in Zhu and Braun (1999) discriminates 350/(Pred|cted. N_O _S|mple metric Is as y_et avallable for evaluat-
of native alignments from alternative alignments, assumin ng the prediction of-sheet topologies. Here we report the

pairing directions are known. Thus on a larger albeit differen _trand pairing precis!on of predictée!shgets, l.e. the propor-
gc‘)n of correctly predicted strand pairs in eg&isheet. Using

2500
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\
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|

Alignment offset of antiparallel strand pairs

1000
|
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600
\

erived using the information theoretic approach. Figures 10
nd 11 show the histograms of alignment offsets of all paral-

dataset, the accuracy of the method presented here is signific- . ) 0 .
antly higher than previous approaches. Assuming that pairin e greedy graph algorlthm, for |n.sFance,051/o of predicted
direction and position of one strand is known, the information -sheets havg-strand pairing precisior 60%.

theoretic approach of Steward and Thornton (2002), which

aligns the known strand with all subsequences4ria offset 4 CONCLUSION

around another strand to identify the best alignment, achieved/e have proposed a neab initio modular approach to the
precisions of 48 and 45% for parallel and antiparallel pairs inproblem of predicting and assembliggsheets. The method
strand triplets, and 37 and 31% for arbitrary parallel and antiis modular in the sense that alternative algorithms can be
parallel pairs, respectively. Since our methods assume that thglugged in’ for each one of its stages, for instance in order to
position of the tws-strands under consideration is known— predict residue pairing probabilities. Starting frgiwresidue

in a purelyab initio setting, this would have to be predicted pairing probabilities, the method provides an integrated pre-
(Rost and Sander, 1993; Jones, 1999; Pollas#li, 2001)—  diction of 8-sheet architectures by predictiggstrand pairs,

the alignment accuracy of our methods cannot be comparefl-strand alignments ang@-sheets assembly. The pseudoen-
directly with the information theoretic approach. However, ergy derived from pairing probabilities ¢f-residue pairs
our results show that it is easier to align parallel strand pairgan rather accurately predigtstrand alignments and score
than antiparallel ones, which agrees with the observationg-strand pairs. The greedy and constrained MST graph
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algorithms are able to predict strand pair ghdheet topo- Branden,C. and Tooze,J. (199%)roduction to Protein Sructure,
logy from pseudoenergy matrices by globally optimizing the 2nd edn. Garland Publishing, New York, NY.

pseudoenergy op-sheets. While the performance of, for Dou.Y., Baisnee,P., Pollastri,G., Pecout,Y., Nowick,J. and Baldi,P.
instance 8-strand alignment appears significantly improved (2004) ICBS: a database of interactions between protein
over previous statistical data-driven approaches, itis clear that chains mediated by beta-sheet formati@hoinformatics, 20,
even further improvements should be possible in each one (E 21672177

the three stages. For instance, in the first step, more inform-vgr;’csk'\/”%gzﬂg[))eraph Algorithms. - Computer Science Press,

ation about the interstrand sequence can be mcluded (Punlt—%riselli,P., Olmea,0., Valencia,A. and Casadio,R. (2001) Prediction
and Rost, 2005). Inthe second step, gap penaltigs friges of contact maps with neural networks and correlated mutations.
can be taken into account. In the third step, graph algorithms  protein Eng., 13, 835-843.

that allow cycles ought to recover cyclgzsheets. Further- Hubbard,T.J. (1994) Use g¢f-strand interaction pseudo-potentials
more, constrained optimization of the binding pseudoenergy in protein structure prediction and modelling. In Lathrop,R.H.,
derived here is at best an approximation that will need to be (ed.), Proceedings of the Biotechnology Computing Track, Pro-
refined to include other packing constraints associated with tein Sructure Prediction MiniTrack of the 27th HICSS IEEE
other secondary structure elements. Computer Society Press, pp. 336-354.

B-Sheets have remained one of the main stumbling blocks chlutchmson,E.G.,_Sessmns,R.B., Thqrnton,J.M._ and Woolfson,D.N.
protein structure prediction over the years. Thus, new methods (1998) Determnnant; of strand register in antiparallel beta-sheets
for the accurate prediction gf-sheets may lead to noticeable of proteins Protein Si., 7 287-300. -

. . . .~ Jones,D.T. (1999) Protein secondary structure prediction based
|mprpvemen_ts in t_he study of protein structure and folding position-specific scoring matrices. Mol. Biol., 292
and in protein design. Our results suggests that the methods 195_g2.

presented here can be combined with contact map predictiokabsch,W. and Sander,C. (1983) Dictionary of protein secondary
to generate more accurate contact maps, which in turn can structure: pattern recognition of hydrogen-bonded and geomet-
be used in fold recognition and 3D reconstruction. Accurate rical featuresBiopolymers, 22, 2577—-2637.

B-residue ang-strand pairings may also provide strong con- Kortemme,T., Ramirez-Alvarado,M. and Serrano,L. (1998) Design
straints for improvingb initio sampling of tertiary structures ~ of a 20-amino acid, three-strandgesheet proteinScience, 281,

and derive energy terms to help select near-native structures 253-256. .
from decoys. Kruskal,J.B. (1956) On the shortest spanning subtree of a graph and

the traveling salesman problem. Pnoceedings of the American

Mathematical Society, Vol. 7, pp. 48-50.
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